Efficiently pricing barrier options in a Markov-switching framework
نویسندگان
چکیده
An efficient Monte-Carlo simulation for the pricing of barrier options in a Markov-switching model is presented. Compared to a brute-force approach, relying on the simulation of discretized trajectories, the presented algorithm simulates the underlying stock-price process only at state changes and at maturity. Given these pieces of information, option prices are evaluated using the probability of Brownian bridges not to fall below some threshold level. It is illustrated how two methods of variance reduction, control variates and antithetic variates, further improve the algorithm. In a small case study, the algorithm is applied to the pricing of options with the EuroStoxx 50 as underlying.
منابع مشابه
Pricing Discretely Monitored Barrier Options by a Markov Chain
We propose a Markov chain method for pricing discretely monitored barrier options in both the constant and time-varying volatility valuation frameworks. The method uses a time homogeneous Markov Chain to approximate the underlying asset price process. Our approach provides a natural framework for pricing discretely monitored barrier options because the discrete time step of the Markov chain can...
متن کاملPricing and Hedging in Stochastic Volatility Regime Switching Models
We consider general regime switching stochastic volatility models where both the asset and the volatility dynamics depend on the values of a Markov jump process. Due to the stochastic volatility and the Markov regime switching, this financial market is thus incomplete and perfect pricing and hedging of options are not possible. Thus, we are interested in finding formulae to solve the problem of...
متن کاملBarrier options pricing of fractional version of the Black-Scholes model
In this paper two different methods are presented to approximate the solution of the fractional Black-Scholes equation for valuation of barrier option. Also, the two schemes need less computational work in comparison with the traditional methods. In this work, we propose a new generalization of the two-dimensional differential transform method and decomposition method that will extend the appli...
متن کاملPricing Exotic Options under a High-Order Markovian Regime Switching Model
We consider the pricing of exotic options when the price dynamics of the underlying risky asset are governed by a discrete-time Markovian regime-switching process driven by an observable, high-order Markov model (HOMM). We assume that the market interest rate, the drift, and the volatility of the underlying risky asset’s return switch over time according to the states of the HOMM, which are int...
متن کاملPricing Options and Equity-Indexed Annuities in a Regime-switching Model by Trinomial Tree Method
In this paper we summarize the main idea and results of Yuen and Yang (2009, 2010a, 2010b) and provide some results on pricing of Parisian options under the Markov regime-switching model (MRSM). The MRSM allows the parameters of the market model depending on a Markovian process, and the model can reflect the information of the market environment which cannot be modeled solely by linear Gaussian...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Computational Applied Mathematics
دوره 235 شماره
صفحات -
تاریخ انتشار 2010